Solution of linear ill-posed problems by model selection and aggregation
نویسندگان
چکیده
منابع مشابه
Solution of linear ill-posed problems by model selection and aggregation
We consider a general statistical linear inverse problem, where the solution is represented via a known (possibly overcomplete) dictionary that allows its sparse representation. We propose two different approaches. A model selection estimator selects a single model by minimizing the penalized empirical risk over all possible models. By contrast with direct problems, the penalty depends on the m...
متن کاملIll-Posed and Linear Inverse Problems
In this paper ill-posed linear inverse problems that arises in many applications is considered. The instability of special kind of these problems and it's relation to the kernel, is described. For finding a stable solution to these problems we need some kind of regularization that is presented. The results have been applied for a singular equation.
متن کاملIterative Solution Methods for Large Linear Discrete Ill-posed Problems
This paper discusses iterative methods for the solution of very large severely ill-conditioned linear systems of equations that arise from the discretization of linear ill-posed problems. The right-hand side vector represents the given data and is assumed to be contaminated by errors. Solution methods proposed in the literature employ some form of ltering to reduce the in uence of the error in ...
متن کاملLinear ill - posed problems and dynamical systems ∗ †
A new approach to solving linear ill-posed problems is proposed. The approach consists of solving a Cauchy problem for a linear operator equation and proving that this problem has a global solution whose limit at infinity solves the original linear equation.
متن کاملFGMRES for linear discrete ill-posed problems
GMRES is one of the most popular iterative methods for the solution of large linear systems of equations. However, GMRES generally does not perform well when applied to the solution of linear systems of equations that arise from the discretization of linear ill-posed problems with error-contaminated data represented by the right-hand side. Such linear systems are commonly referred to as linear ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Electronic Journal of Statistics
سال: 2018
ISSN: 1935-7524
DOI: 10.1214/18-ejs1447